
Developing a Secure Online Java-based

Data Analysis and Visualization Tool

Parag Dadhania,
Lloyd Greenwald,
Prashant Doshi,

and
John R. Clarke

Technical Report DU-CS-04-06
Department of Computer Science

Drexel University
Philadelphia, PA 19104

October 2004

1

Developing a Secure Online Java-based Data

Analysis and Visualization Tool

Parag Dadhania and Lloyd Greenwald

Department of Computer Science, Drexel University

Philadelphia, PA 19104

{parag,lgreenwa}@plan.cs.drexel.edu

Prashant Doshi

Department of Computer Science, University of Illinois, Chicago

Chicago, IL 60607

pdoshi@cs.uic.edu

John R. Clarke

Department of Surgery, Drexel University

Philadelphia, PA 19104

jclarke@linc.cis.upenn.edu

 2

Summary

We describe the design and development of a web-based data analysis and visualization

tool that integrates back-end security and data analysis support with flexible front-end query

and visualization support, including a variety of common and uncommon data views.

Component technologies include Java servlets, Java-based data visualization modules, and

probabilistic modeling, reasoning, and machine learning data analysis tools. This paper

describes the design and development of our prototype tool, SOJDAV (Secure Online Java-

based Data Analysis and Visualization), as an example to ground our discussion of the

practice of creating such tools. The front-end components of SOJDAV are designed to

enable dynamic visualization of data over the Internet. Intuitive, dynamic data visualization

supports a broad range of distributed research and education goals. SOJDAV’s back-end

components provide varying levels of privileged access to data, models and analysis tools.

These back-end components are created using web server and servlet technology to

insulate the main database from unauthorized access and corruption, while maintaining the

integrity of valuable research data. Back-end tools have access to both a comprehensive

cleansed database of meaningful relational data and models derived from statistical and

Bayesian network integrations of this data. Our prototype implementation of SOJDAV has

been deployed to support medical research into time-critical patient care.

Keywords: Multi-component system, research and educational aid, probabilistic and

statistical analysis, web-based flexible analysis and visualization

 3

1 Introduction

Even though modern hardware and database systems have made it possible to

store gigabytes of information, it can be difficult to fully exploit the information in a

large database with complicated structure. Developing systems with secure access

to important data and intuitive data visualizations can help a wide range of users

effectively employ and analyze information. This paper introduces a prototype web-

based tool – A Secure Online Java-based Data Analysis and Visualization Tool

(SOJDAV) – that provides a novice user an ability to construct both simple and

complex queries to analyze data, and secures important data through varying levels

of privileged access. Queries may include probabilistic modeling and reasoning via

Bayesian and Naïve Bayesian networks. This tool is aimed towards wide spectrum

of users, especially novices with limited computer expertise and limited knowledge of

the inner structuring of the database. We provide details of the integration of

component technologies used to create SOJDAV to inform the practice of

developing similar tools.

1.1 Motivation and Goals

The primary motivation for developing SOJDAV is to provide a distributed research

resource for inventing new techniques in time-critical patient care in emergency

center trauma management [16, 19, 17, 18, 4, 3, 12, 5]. To be useful to medical

practitioners and researchers as well as computer scientists the tool must provide an

intuitive interface. To provide secure distributed access to private data across a

variety of users with varying levels of authority the tool must implement a flexible

 4

security solution. To accomplish these goals, SOJDAV provides intuitive access to

data by providing custom visualization of data views, secure access to software tools

and private data over public networks, and remote access and remote deployment of

component tools. The additional goal of this paper is to provide enough information

regarding our prototype tool so software practitioners can build similar tools.

The Internet has made possible large-scale dissemination and round-the-clock

availability of information. With this accessibility come security and privacy issues.

By carefully controlling access, SOJDAV protects valuable research data while the

flexible component-based architecture permits the integration of a variety of back-

end resources.

1.2 Database Visualization

Formally, database visualization is any procedure performed by a computer program

that integrates data from different sources and then transforms the data into images.

As described in [9], the database visualization process consists of the following three

steps:

1. Retrieving Data from Data Source – data source can be of different types and

can be located locally or distributed over the network

2. Mapping – transform original data into a geometric representation of the data

to provide the visual representation

3. Rendering and Displaying – display data in various formats

 5

As proposed in [6], a database visualization tool usually has three functions: data

visualization, data manipulation, and data analysis. In addition to providing basic

functionalities, our tool integrates probabilistic data via Bayesian and Naïve

Bayesian network modeling, learning, and inference.

1.3 Approach

Our approach to designing and developing SOJDAV derives from its data sources

and intended users. Our data sources include a comprehensive medical database

and a series of probabilistic networks derived from this database. Our intended

users include medical personnel, medical researchers, and computer science

researchers. As each one of our anticipated users requires different software tools

and interacts with our primary data sources at different levels, SOJDAV has been

developed as an integration of multiple front-end and back-end technology

components.

Our multiple-component solution follows the Java Enterprise Edition (J2EE) [13]

standard for deploying multi-tier applications. Developing our tool using general-

purpose enterprise software development tools, rather than specialized component-

building software, permits us to use a range of commercial software applications

designed to interoperate in enterprise environments. Additionally, enterprise

development tools such as servlets provide a straightforward way to make use of

existing applications not originally designed for enterprise environments. Moreover,

basing our multiple-component architecture on general-purpose tools does not

 6

preclude us from incorporating special-purpose software components. The

foundation of this secure distributed solution enhances the features of component

tools. Our multiple-component solution integrates database access, secure web

server and servlet software, statistical analysis and data visualization, and

probabilistic data integration support via Bayesian network modeling, learning and

inference.

Figure 1: Interaction of various components of our approach

Figure 1 depicts the various components implementing our multiple-component

solution. These components are deployed across a distributed system consisting of

one or more Web servers and multiple client machines. A Visualization component

 7

co-resides with a client browser and interacts with server-based Security

component, Statistical Analysis component, and Modeling and Inference

components. A Visualization component never interacts directly with back-end

resources such as the relational database management system (RDBMS) or

Probabilistic Modeler. This architecture prevents unauthorized access to valuable

resources and hence protects data integrity. Furthermore, communication between

any components takes place over secure channels to ensure integrity and

confidentiality.

In Section 3 we describe the design of each component depicted in Figure 1 and the

architecture that permits these components to interoperate and transfer information

securely across public networks. Our solution provides both back-end security and

data integration support and front-end query and visualization support. We motivate

the design of this multiple-component system in the context of our larger medical

research and education efforts in Section 2. Section 4 provides details on the

design and implementation of SOJDAV; while section 5 demonstrates a simple user

interaction scenario. We discuss the effectiveness of this system and identify future

directions in Section 6.

 2 Building and Analyzing the Core Database

A valuable research database motivates our work and provides the core of our

system development. Our work revolves around a comprehensive medical database

derived from a large data file from the Pennsylvania Trauma Systems Foundations

 8

Registry containing 412 attributes of medical information on 169,512 patients

admitted to twenty seven trauma centers in Pennsylvania between 1986 and 1999.

Information collected on each patient can be broadly classified into the following

categories:

• Patient General Information

• Patient Clinical Data

• Process of Acute Care

• Timestamps of various processes

In the development of this database, we detected and corrected over 1000 data

entry errors in non-temporal fields and an additional 5500 errors in time and date

fields. Using a probabilistic context-driven approach [4, 5], we identified and

corrected four classes of error in our dataset: (1) general typographical errors, (2)

non-domain-specific errors (e.g. calculation errors), (3) domain-specific errors, and

(4) errors in the temporal ordering of time and date fields. The resulting cleansed

and validated database is now being used to provide statistical studies and

probabilistic models to help us better understand the effect of time delays on patient

outcome.

The visualization tool described in this paper assists users with manual decision-

making and exploratory analysis of the data and probabilistic models derived from

the data. Users have varying levels of secure data access that permit them to query

and extract information from this database. We developed this tool, in part, to

provide distributed access to the data and models to researchers outside our core

 9

research team. Confidentiality and privacy restrictions require us to provide a

solution with varying levels of secure data access.

This system has already been used to develop new medical knowledge. In one

study [3], we show that the time to laparotomy for intra-abdominal bleeding from

trauma does affect survival for delays in ED up to 90 minutes. Additional exploratory

research includes investigating the use of machine learning algorithms to

automatically extract models from the data to provide a clearer picture of the

significance of certain parameters in the data. Models explored include naïve Bayes

and decision tree classifiers.

Figure 2: Data Modeling and Mapping

We apply a non-domain-specific transformation as the initial step of building our

visualization components, as depicted in Figure 2. In this approach, we provide a

data mapping that transforms data to structures that can be used in visualization.

During this data mapping procedure, all trivial and unwanted information is filtered

out and interesting information is transformed into a structured form, such as a

histogram. The data mapping procedure takes place in two different steps: (1)

 10

transform the original data into Java objects and (2) incorporate the Java objects into

the visualization component. As part of our visualization front-end, SOJDAV makes

use of a widely known histogram plotter API known as JAS API [7].

3 Infrastructures and Architecture

In this section we describe our approach to designing and developing SOJDAV. We

begin this section by reviewing the component technology. Inspired by its central

promise, ‘write once, run anywhere’, we chose to build our solution based on Java

software platform. Our development effort concentrated on well-established sound

methods and proven technology including the Java Enterprise Edition (J2EE) [13]

standard for deploying multi-tier applications. Multi-tier component architectures

promote minimal interdependence amongst components. The resulting system

satisfies our requirements for flexible, intuitive use as well as permitting robust and

error-free software component deployment in real-world distributed environments.

3.1 System Infrastructure

Java Enterprise Edition (J2EE) defines a standard for developing multi-tier

applications in which all pieces of the application are portable across platforms and

servers. Key components of this standard are servlets to extend and enhance Web

servers, Java server pages to create dynamic Web content, and Enterprise

JavaBeans for deploying server-side as well as client-side components. J2EE

provides multiple messaging options, performance, scalability, and security.

 11

Since we chose to develop a multiple-component solution, the J2EE [13] platform

was the ideal choice as it supports distributed applications that take advantage of a

wide range of new and evolving technologies, while simplifying development through

a component-based application model. This component-based solution permits

implementation of all necessary logic at the server-side, providing a simple and clear

interface to the user-end. Also, in compliance with the J2EE architecture, our

solution defines a client tier, a middle tier or Web container, and a back-end tier or

Enterprise Information System (EIS) tier [13] as shown in Figure 3.

Figure 3: The 3-tier multi- component architecture

The client tier supports a variety of client types, both outside and inside of corporate

firewalls [13, 1]. In our solution the client tier consists of Java applets [8] launched

from within WWW browsers. A client accesses the middle tier primarily using Web

standards, such as HTTP, HTTPS, HTML, and XML. More specific details of the

 12

architecture of the novel client-tier component deployed in our solution is provided in

Section 3.2.

The middle tier supports client services through the use of Web containers, and

business logic component services through Enterprise JavaBeanstm (EJB)

containers. This tier essentially hosts both presentation and business logic, and it

uses standard application programming interfaces (APIs) to access the EIS tier

resources [1] as depicted in Figure 4. A servlet, which is a program that extends the

functionality of a Web server, serves as a Web container in this tier [13]. Servlets

can be thought of as applets at the server side that communicate with the

components at the client side to provide dynamic and interactive content to the user.

In our application we are careful to provide secure middle tier

components.

Figure 4: Web container components and interactions

 13

The middle tier components make use of the Secure Socket Layer (SSL) protocol to

provide privacy and security over the Internet. SSL uses highly secure encryption to

allow client-server applications to communicate in a way that does not permit

eavesdropping or tampering [13]. Additionally, in this protocol servers are always

authenticated and clients are optionally authenticated for genuineness.

Figure 5: Enterprise Information System (EIS) tier components

The back-end or EIS tier supports access to existing information systems by means

of standard APIs, such as the Java Database Connectivity (JDBC) API. As depicted

in Figure 5, Relational Database Management Systems (RDBMS) and Legacy

Applications are examples of EIS tier resources. The SOJDAV EIS tier uses

PostgreSQL Server as the RDBMS for primary medical data storage, Weka APIs to

support Naïve Bayesian networks, and Netica tm APIs to support probabilistic

 14

inference and storage of Bayesian networks. Since applets on the client tier do not

have direct access to the resources on EIS tier, the middle tier is designed as a

secure intermediary between the front- and back-ends.

3.2 System Architecture

In order to restrict clients’ direct access to data sources, SOJDAV is based on a

distributed asynchronous process communication architecture. This architecture

follows the client-server model for distribution of services and interoperability, while

permitting multiple clients to simultaneously access the services. In this architecture,

a client process provides a graphical user interface to visualize the information. A

server process performs most of the computation and generally resides on a

different machine. Figure 6 shows the general architecture of our tool.

Figure 6: System Architecture

 15

3.2.1 Client Side Modules

A client module renders a graphical user interface, transforms the intermediate data

into displayable data and displays data graphically. Additionally, it communicates

with a server to retrieve intermediate data. In SOJDAV, a client consists of following

three modules:

1. Client Graphical User Interface Module

This module provides a graphical user interface for users to interact with our

tool. This module helps a user to formulate a query to retrieve data as well as

providing an interface to enter evidence for reasoning with probabilistic

networks. It also provides alternative display modes for data.

2. Layout and Display Module

The Layout and Display module is responsible for rendering all graphical

components for a user. The module initially sets up a graphical user interface

based on a user’s access level. Once user formulates a query and requests

data or histograms, this module converts intermediate data into appropriate

displayable format. This module also provides a user flexibility in how a

chosen histogram can be viewed. Upon user selection, this module repaints

a histogram to accommodate user selection.

3. Communication Module

This module bridges the gap between client and server in our tool. This

module resides with a client and provides methods to communicate with

server. Communication between client and server takes place over Secure

Socket Layer using HTTP.

 16

3.2.2 Server Side Modules

Server side modules are responsible for interacting with database systems as well

as other application servers or services. In SOJDAV, a server consists of two sets of

modules:

1. Data Services Modules

The Data Services Modules consist of several Java servlets. Servlets are

designed for a specific purpose. Upon a client’s request, servlets will interact

with the appropriate Data Access Module to obtain raw data. They are also

responsible for formatting raw data in order to transmit it to a client.

2. Data Access Modules

The Data Access Modules retrieve and filter raw data from the data sources

and provide refined data to the appropriate Data Services Module. As data

sources can be of various types, our tool supports databases as well as

various probabilistic modelers. When databases are used as a data source,

we use JDBC-ODBC to access data sources. Similarly, we use Netica API

and Weka API to access probabilistic modeler data sources and machine

learning and probabilistic reasoning services.

4 System Design and Implementation

4.1 Client Components

Comprehensive, cleansed, and easily accessible large medical research databases

are rare resources. After putting forth the considerable effort to produce our

database we further understand its value to ourselves and the greater health care

 17

and medical research communities. As mentioned earlier, we have already

employed and are continuing to employ this system to discover new medical

knowledge [3].

Providing intuitive and visual access to this data multiplies its value. Our goal in

designing a flexible client component is to provide convenient access to this data for

medical research. Our experience extracting data through manually constructing

queries and manually transferring data across independent applications informed

our user interface component and architecture design decisions.

The information retrieval process usually starts by formulating a query. The query

specifies which attributes of the data are desired and what filters to apply on records

containing these attributes. Query results are presented to the user, who then

evaluates the results and poses new queries. If the results are inadequate, the user

can re-specify the query and re-submit to obtain a refined result. This process is

known as refinement. There are many powerful query languages, such as SQL, to

provide this standard functionality. However, the potential audience of medical

researchers is much larger than the audience of researchers who have also been

trained in a formal query specification language. SOJDAV’s flexible client is

designed with an intuitive interface as an alternative to formal query specification

languages for novice users, while retaining the power of formal languages for

advanced users. Importantly, our client design maintains the security of our data

when accessed remotely.

 18

As our client components are written entirely using Java and Java Beans with a

modular approach, it is easy to scale for more functionality. It also provides a secure

communication channel and does not require any specific platform to run.

4.2 Server Components

Our server components consist of several servlets that communicate with client and

back-end components. Servlets are Java programs that run on a server’s Java

virtual machine (JVM) and communicate with back-end components by means of

standard APIs. SOJDAV uses JDBC-ODBC APIs to communicate with Database

systems and Netica and Weka APIs to communicate with probabilistic inference and

machine learning systems to provide Bayesian network and Naïve Bayes network

modeling, respectively.

As with our client components, our server components are designed with a modular

approach. As a result, our system is flexible to change in one part of a module

without affecting the whole system. Also, a user can add more servlets that can

communicate with various legacy systems using their own APIs. This functionality

increases usability of our tool design in various domains.

4.3 Relational and Probabilistic Back-Ends

The server-side EIS tier interacts with a variety of third party systems through their

specific application programming interfaces. Systems that we are using include a

relational database system and software that permits efficient probabilistic inference

 19

on Bayesian networks and machine learning using Naïve Bayes classifiers. In this

section, we describe these systems in further detail

4.3.1 Relational Database Management System

The trauma data is stored, organized, and manipulated through a relational

database management system called PostgreSQL. Use of a RDBMS to manage

data objects automatically enforces data integrity, data recovery in case of loss, and

data dependencies. In addition, such database systems may be accessed through

standard query language interfaces. These query language interfaces may be

embedded in high-level programming languages. Java Database Connectivity

(JDBC) – Open Database Connectivity (ODBC) provides a means to access

databases through programs written in the Java high-level programming language.

Through JDBC-ODBC, the use of a Java-based EIS tier allows efficient

communication between the server-component and the database system. All data

requests emanating from the user are captured by the EIS tier and passed onto the

database system for fulfillment.

4.3.2 Probabilistic Inference Systems

Bayesian Network

Bayesian networks provide intuitive and efficient methods for capturing and

manipulating probabilistic relationships between data. These representations have

been used effectively in medical domains since their inception. For example, the

HEPAR project [10, 11] employed a Bayesian network to predict one of 16 liver

 20

disorders. Another example is a system called ALARM [2] that uses a Bayesian

network connecting 8 diagnoses, 16 findings, and 13 intermediate variables. The

system monitors patient conditions in medical centers and sounds an alarm for

distress.

Figure 7: A high level representation of our Bayesian network

 21

We have constructed a series of Bayesian networks to capture the probabilistic

relationships in our trauma data. These networks vary in structural complexity,

speed of inference, predictive capability, and required expert knowledge [4]. A

medical expert (co-author John R. Clarke, M.D., Trauma Surgeon and Professor of

Surgery) and pertinent medical literature provided expert knowledge. These

networks are being used for further study into the effects of time delay on patient

outcome. A high-level description of the data and general structure of the

relationships between attributes is given in Figure 7.

An example Bayesian network constructed in this work is shown in Figure 8. This

Bayesian network contains 129 nodes encompassing information on patient pre-

hospital care, clinical signs, disease diagnosis fields, operative and non-operative

procedures and final patient outcome. The parameters (i.e. conditional probability

tables (CPT)) were learned from 148,502 records present in the medical database

using a Bayesian MAP machine learning algorithm. The complete algorithm appears

in [15]. Further detail on the construction of this network is available in [4]. Within

our multiple-component solution, Netica serves as the back-end implementing our

Bayesian network component. This commercial software permits graphical

construction of the network, efficient learning of the parameters using the algorithm

described above, and probabilistic inference using a junction tree (join tree of

cliques) algorithm [14].

 22

Figure 8: The deployed Bayesian network constructed using expert domain knowledge

Using our visualization front-end component, evidence can be entered for any of the

nodes for which data is observed. A middle tier component securely relays evidence

to a back-end component that interacts with Netica through its specialized API. The

probability distribution that results from such a query (typically over patient outcome)

is communicated back to the user component and displayed through the

 23

visualization graphical user interface. Our system allows the user to select any node

for evidence gathering and probabilistic inference. This puts at the disposal of the

user an expert prediction and diagnosis service that uses a large real-life medical

data set to compute its results. In addition to functioning as a research tool, the

network can provide valuable support in making time-critical decisions in the trauma

center.

Naïve Bayes Classifier

The Naïve Bayes Classifier is a highly practical algorithm for classifying a target

value given a set of attributes. We use the Naïve Bayes Classifier to classify if a

patient is going to live or die based on 147 attributes such as age, pulse, and predot

values. The target value set V is {Live, Die}. The attribute set A < a1, a2, … , an > is

a tuple of n attributes (here n is 147). Each attribute contains a value for the

patient’s age, sex, pulse, etc. The standard Naïve Bayesian classification algorithm

is used to classify the most likely outcome, given an attribute tuple. This algorithm

assumes that attribute values are conditionally independent given the target value

(the naïve approach). Simple conditional probabilities of each combination of

attribute and outcome, P(ai | vj), are automatically learned from a subset of the

medical database. A second subset of the database is used to verify the accuracy

of the learned classifier. In one result, we learned a Naïve Bayes classifier with a

90% prediction accuracy.

 24

5 System Demonstrations

This section provides demonstration views of our prototype tool, SOJDAV. Before

using this tool, a potential user is manually validated and given a user account with a

certain access level from the administrator of the system.

The client component provides secure access to the database through role-based

authentication and encryption. A user must first be authenticated to start a new

session. This is done using the standard login-password combination mechanism.

This security mechanism is motivated by the crucial need to prevent unauthorized

users from accessing valuable research data. Upon successful login, the user will

be able to interact with the database, Bayesian network or Naïve Bayes network. A

role-based access policy provides varying levels of privileged access. Certain

features of the user interface are disabled depending upon the role or privilege level

of the user, permitting secure operation for a wide spectrum of users.

One view of the graphical user interface of our client component is depicted in

Figure 9. This panel allows generation of charts and formulation of queries for data.

As our goal is to provide a flexible and intuitive client component, a graphical user

interface module renders all attributes for the user to choose. With the single click of

a button, user will be presented with raw data in a tabular format, as shown in Figure

9. The back-end database for demonstration purpose comprises a restricted set of

records, not representative of our confidential medical data.

 25

Figure 9: Data View of Data Manipulator

As stated earlier, SOJDAV provides a user an ability to generate histograms for

selected attributes. Figure 10 shows a frequency histogram for attribute “Amount”,

restricted to records with specified criteria.

 26

Figure 10: Histogram View of Data Manipulator

The refinement process can proceed rapidly from presentation of initial histograms

of data. A straightforward interface, shown in Figure 11 and Figure 12, helps the

user to refine a query to focus on aspects of interest. This interface permits the user

to build complex queries from simple connectives, such as Boolean operators.

 27

Figure 11: Attribute Selection Window

Figure 12: Attribute Value Selection Window

The graphical nature of this query construction circumvents the need to learn a

complex query programming language. Once a query has been refined using this

simple method, the initial frequency histograms are dynamically updated with the

click of a button to reflect the new constraints.

More advanced users are not limited to this visual querying. Users with knowledge of

formal query languages can directly type in the query in the constraints field of the

panel. Arbitrarily complex queries can be constructed using this input method. As

depicted in Figure 9, results are provided in tabular format to permit easy storage

and transfer to custom-designed user analysis tools. For example, tabular results

can be automatically saved as spreadsheets to make use of the sophisticated built-

in analysis tools of commercial spreadsheet applications. This feature is available

 28

only to privileged users to ensure the integrity of our database, and the privacy of the

data.

Figure 13: Initial View of Naïve Network Panel

In addition to standard statistical manipulation, data visualization, and complex query

 29

formation, our client component also provides an interface for entering evidence in

the form of patient parameters and obtaining probabilistic predictions. This

probabilistic inference is carried out using Bayesian network and Naïve Bayes

network back-ends as described in Section 4.3. The client component permits both

evidence accumulation for user-selected nodes in a Bayesian network and

extraction of prediction and/or diagnoses on query nodes from the network.

Furthermore, a user is able to use a Naïve Bayes classifier to classify a target value

given a set of attributes as described in Section 4.3. Figure 13 shows a panel that

allows a user to visually enter the values of a selected attribute. A user can add as

many of attributes as desired, and provide constraints on records. The bottom half

of this panel displays the outcome of the classifier (not shown).

6 Discussions and Future Work

This paper presents the design and development of a web-based data analysis and

visualization tool that integrates back-end security and data analysis support with

flexible front-end query and visualization support. We motivate this design through a

prototype tool, SOJDAV, that provides distributed secure access to a valuable

medical research database and probabilistic models derived from this database.

Dynamic visualization of information through the use of graphs coupled with user-

friendly interfaces allows easy cognizance of data for the user and promotes ease of

use of our system. Ease of use does not limit the functionality available to advanced

and privileged users.

 30

We present a multiple-component solution that follows the Java Enterprise Edition

(J2EE) standard for deploying multi-tier applications. The detailed description of the

development of our tool helps inform the practice of creating similar tools. Through

the application of Secure Socket Layers and password-based authentication, data

flowing through the relatively insecure Internet is made immune to common

unauthorized activities. SSL is the de-facto standard of Internet security and meets

the challenges faced by our application. SOJDAV employs Java Servlets and Beans,

a large-scale Relational Database Management System, and third-party software for

probabilistic inference and machine learning.

The Internet has revolutionized the notion of availability, making most services

accessible any time. The large spectrum of end-users and the various uses

necessitate high availability of our system. This increased availability may translate

to more effective use of our medical database in solving problems of time-critical

patient care.

Choosing to base our multiple-component architecture on general-purpose tools

does not preclude us from adding special-purpose intelligent components or

software tools in the future. Furthermore, our approach is based on public domain

protocols and standards and does not use any proprietary code in the core system.

Our experience indicates that development is simplified if third-party software

provides a Java API. However, if a Java API is not available, back-end software

 31

with non-Java APIs can be accommodated by building Java code to interact with

these APIs.

The development of this system can be duplicated by anyone interested in building

similar systems. An Appendix is provided with links to tools used.

Acknowledgments

Special thanks to Andrew Ragone for his help with the Naïve Bayes Classifier. This

research is sponsored in part by a Drexel/MCP-Hahnemann Research Synergies

award and in part by a National Science Foundation (NSF) Instrumentation Award

under grant CISE-9986105.

 32

References

[1] Stephen Asbury and Scott R. Weiner. Developing Java Enterprise Applications.

John Wiley and Sons, 1999.

[2] I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper. The ALARM

monitoring system: A case study with two probabilistic inference techniques for belief

networks. In Proceedings of the Second European Conference on Artificial

Intelligence in Medicine, London. Springer Verlag, Berlin, August 1989.

[3] John R. Clarke, Stanley Z. Trooskin, Prashant J. Doshi, Lloyd G. Greenwald, and

Charles J. Mode. Time to laparotomy for intra-abdominal bleeding from trauma does

affect survival for delays up to 90 minutes. In The Journal of Trauma: Injury,

Infection, and Critical Care, 52(3):420-425, 2002.

[4] Prashant Doshi. Effective methods for building probabilistic models from large

noisy data sets. Master’s thesis, Drexel University, Philadelphi,PA, June 2001.

[5] Prashant J Doshi, Lloyd Greenwald, and John R. Clarke. On retaining

probabilistic error models when building Bayesian networks. In AAAI Fall

Symposium on Using Uncertainty within Computation. North Falmouth,

Massachusetts, November 2—4, 2001, pages 47-48.

[6] Jade Goldstein, Steven F. Roth. Using aggregation and dynamic queries for

exploring large data sets. Proceedings CHI’94 Human Factors in Computing

Systems. ACM: New York, NY, 1994

[7] Java Analysis Studio, http://jas.freehep.org [2004]

[8] Bill Joy, Guy Steele, James Gosling, and Gilad Bracha. The Java (tm) Language

Specification, Second Edition. Addison Wesley, 2000.

 33

[9] Ulrich Lang, Georges G. Grinstein, R. Daniel Bergeron. Visualization related

metadata. Database Issues for Data Visualization: IEEE Visualization ’95 Workshop,

Atlanta, GA (Lecture Notes in Computer Science, vol. 1183). Springer-Verlag:

Heidelberg, Germany: 26-34; 1995

[10] PJF Lucas and AR Janssens. Second evaluation of hepar, an expert system for

the diagnosis of disorders of the liver and biliary tract. Liver, 11(340), 1991.

[11] Agnieska Onisko, Marek Druzdzel, and Hanna Wasyluk. A probabilistic causal

model for diagnosis of liver disorders. In Proceedings of the Workshop held in

Malbork, Poland, Malbork, Poland, June 15-19 1998.

[12] David C. Parkes and Lloyd G. Greenwald. Approximate and compensate: A

method for risk-sensitive meta-deliberation and continual computation. In AAAI Fall

Symposium on Using Uncertainty within Computation. North Falmouth,

Massachusetts, November 2-4, 2001, pages 101-108.

[13] Paul J. Perrone and Venkata S. R. Chaganti. Building Java Enterprise Systems

with J2EE: The Authoritative Solution. Sams, 2000.

[14] D. Spiegelhalter, A. Dawid, and S. Cowell. Queries and updates in probabilistic

networks. Journal of Statistical Science, 8(3):219–283, 1993.

[15] D. Spiegelhalter, A. Dawid, S. Lauritzen, and R. Cowell. Bayesian analysis in

expert systems. Journal of Statistical Science, 8, 1993.

[16] B. L. Webber, J. R. Clarke, R. Rymon, and M. Niv. TraumAID: AI support for the

management of multiple trauma. In AAAI Symposium on Artificial Intelligence in

Medicine, Stanford, CA, 1990.

 34

[17] B. L. Webber, R. Rymon, and J. R. Clarke. Flexible support for trauma man-

agement through goal-directed reasoning and planning. Artificial Intelligence in

Medicine, 4(2):145–163, April 1992.

[18] Bonnie L. Webber, Sandra Carberry, John R. Clarke, Abigail Gerntner, Terrence

Harvey, Ron Rymon, and Richard Washington. Exploiting multiple goals and

intentions in decision support for the management of multiple trauma: A review of

the TraumAID project. Artificial Intelligence, 105(1–2):263–293, 1998.

[19] Bonnie L. Webber, John R. Clarke, Michael Niv, Ron Rymon, and Marin

Milagros Ib´anez. TraumAID: Reasoning and planning in the initial definitive man-

agement of multiple injuries. Technical Report MS–CIS–90–50, Department of

Computer and Information Science, University of Pennsylvania, Philadelphia, 1990.

 35

Appendix A: List of Figures

Figure 1: Interaction of various components of our approach.. 6
Figure 2: Data Modeling and Mapping... 9
Figure 3: The 3-tier multi- component architecture.. 11
Figure 4: Web container components and interactions... 12
Figure 5: Enterprise Information System (EIS) tier components ... 13
Figure 6: System Architecture .. 14
Figure 7: A high level representation of our Bayesian network ... 20
Figure 8: The deployed Bayesian network constructed using expert domain knowledge...... 22
Figure 9: Data View of Data Manipulator .. 25
Figure 10: Histogram View of Data Manipulator... 26
Figure 11: Attribute Selection Window.. 27
Figure 12: Attribute Value Selection Window ... 27
Figure 13: Initial View of Naïve Network Panel .. 28

 36

Appendix B: Installation Help

SOJDAV is developed using servlets and JavaServer Pages and so must be

installed on a server with a servlet container. We used Tomcat 5.x server to

demonstrate the prototype of our tool. SOJDAV must also be used in conjunction

with a network database and appropriate drivers and/or APIs.

B1. Technology Required

• J2SE 1.4.2 SDK, J2EE 1.4 SDK

These can be downloaded from Java Technology’s website –

http://java.sun.com/. Follow the installation instructions provided to properly

install and configure appropriate variables such as Classpath.

• Webserver

To demonstrate prototype of our system we have used Tomcat 5.x server,

which can be obtained from Jakarta’s website –

http://jakarta.apache.org/tomcat/. Follow installation instructions provided

along with the documentation to install Tomcat webserver and configure

appropriate variables.

After installation, modify server.xml file that provide SSL support as well as

run server on desired port. Instructions to modify server.xml and web.xml files

found under config folder can be found in Tomcat documentation.

Unpack the provided zip file under webapps folder of Tomcat to install

SOJDAV. Restart the Tomcat server to deploy our tool properly.

• Database

We use PostgreSQL to host data at the back-end. However, it is not entirely

 37

necessary to use any particular database to run our tool. PostgreSQL can be

downloaded freely from it’s website at http://www.postgresql.org/. Obtain the

documentation from the same website and follow installation instruction to

properly install and configure database system.

Upon successful installation, create necessary database to host data. Once

database is created, user will need to create ODBC connection named

“DiscTrauma”. This connection should be made available to Tomcat (see

Tomcat’s Administrator Guide). Also place a jar file containing JDBC-ODBC

APIs in lib directory of Tomcat.

• NeticaJ APIs

In order to provide a probabilistic inference support, we used NeticaJ APIs

from Norsys. It can be freely obtained from Norsys’s website at

http://www.norsys.com/. Installation instructions are provided with

downloaded file. Follow these instructions to install and configure appropriate

variables properly. Place a jar file containing APIs in lib directory of Tomcat.

• Weka API

Additional probabilistic modeling and machine learning support is provided by

the Weka API. It can be freely obtained from

http://www.cs.waikato.ac.nz/ml/weka/. Installation instructions are provided.

Place a jar file containing APIs in lib directory of Tomcat.

